Fibonacci s-Cullen and s-Woodall Numbers

نویسندگان

  • Diego Marques
  • Ana Paula Chaves
چکیده

The m-th Cullen number Cm is a number of the form m2 m + 1 and the m-th Woodall number Wm has the form m2 m − 1. In 2003, Luca and Stănică proved that the largest Fibonacci number in the Cullen sequence is F4 = 3 and that F1 = F2 = 1 are the largest Fibonacci numbers in the Woodall sequence. Very recently, the second author proved that, for any given s > 1, the equation Fn = ms m ± 1 has only finitely many solutions, and they are effectively computable. In this note, we shall provide the explicit form of the possible solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalized Cullen and Woodall Numbers That are Also Fibonacci Numbers

The m-th Cullen number Cm is a number of the form m2 m + 1 and the m-th Woodall number Wm has the form m2 m − 1. In 2003, Luca and Stănică proved that the largest Fibonacci number in the Cullen sequence is F4 = 3 and that F1 = F2 = 1 are the largest Fibonacci numbers in the Woodall sequence. A generalization of these sequences is defined by Cm,s = ms m+1 and Wm,s = ms m−1, for s > 1. In this pa...

متن کامل

Cullen Numbers in Binary Recurrent Sequences

In this paper, we prove that the generalized Cullen numbers, Cn(s, l) := sn ·2+ l, where l is an integer and s := (sn)n≥0 is a sequence of integers satisfying log |sn| < 2n−1 + O(1), occur only finitely many times in binary recurrent sequences (un)n≥0 whose characteristic roots are quadratic units and that satisfy some additional conditions. We also generalize this result in some sense to show ...

متن کامل

Coefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers

In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers.  Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Frobenius numbers of generalized Fibonacci semigroups

The numerical semigroup generated by relatively prime positive integers a1, . . . , an is the set S of all linear combinations of a1, . . . , an with nonnegative integral coefficients. The largest integer which is not an element of S is called the Frobenius number of S. Recently, J. M. Maŕın, J. L. Ramı́rez Alfonśın, and M. P. Revuelta determined the Frobenius number of a Fibonacci semigroup, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015